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Abstract-Asymptotic methods are used to obtain simple formulas for use in predicting the effective modulus
properties of composite materials containing randomly oriented fibers. Both cases of two and three
dimensional random orientation are treated. The theoretical predictions are compared with experimental
results in the two-dimensional case. The results extend and simplify an earlier approach to the problem.

INTRODUCTION
The fundamental problem in the theory of fiber reinforcement is that of providing predictive
methods for the properties. The end results of predictive derivations are the formulas which
provide the basis of design methods. In terms of the stiffness properties, the primary work to date
has concerned aligned fiber systems. In fact, references to the aligned fiber case are too numerous
to detail here. Suffice to say, great success has been derived from these theoretical results, and
design methods abound for aligned fiber system. Recent developments in this field have focused
attention upon the complementary configuration involving random fiber orientation. The random
fiber case admits description in both two and three dimensions, corresponding to planar, and fully
three dimensional cases. The two dimensional, plane stress case represents the configuration of a
thin mat of randomly oriented fibers impregnated by a resin phase. The three dimensional case is
becoming of technological importance because of the emergence of a new processing method
based upon pellets which are pre-compounded fiber-resin combinations. The use of these
percompounded pellets in conventional processing methods results in random orientations of the
fibers, or partially randomized configurations.

There have been several previous studies of the random fiber case. The first such study was
apparently that due to Cox [1]. The motivation of this work was to obtain a predictive method for
the properties of cellulose fiber materials. The result was the Cox formula for the three
dimensionally random case

where EI is the modulus of the fiber phase, and e its volume concentration. The corresponding
result for the two dimensional case was found to be

eEl
Em =T'

The Cox formulii do not account for the presence of Ii matrix phase and the resulting interaction
between fiber and matrix phases. The first account of fiber-matrix interaction effects was
provided by Tsai and Pagano[2] in the context of laminated plates. Further work along the lines
using the "laminate analogy" was given by Halpin, Jerina and Whitney [3]. A numerical method
for predicting the properties was given by Nielsen and Chen [4]. Finally, Christensen and
Waals [5] provided a method for determining random orientation properties using a geometric
averaging method.

All of the above noted methods concerning random fiber-matrix systems require some type of
algebraic/numerical evaluation as the final step. That is to say, these methods do not result in final
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analytical forms which directly admit physical interpretation. The somewhat complicated final
forms of these results inhibits their widespread application and utilization. There is a need for
simple, reliable formulas which predict the random orientation composite properties in terms of
the properties of each phase. Formulas corresponding to the rule of mixtures for the aligned fiber
case are needed for the random orientation case. However, these simple formulas, suitable for
design application, cannot be conjectured or postulated, and preferably they should not be
empirical forms established from limited data examination. Ideally, these predictive property
forms should be rationally derived from the principles of mechanics. This is the aim of the
present study. If successful, the resulting expressions will provide forms that invite physical
interpretations and understanding, as well as ease of application.

The plan here is to recall the appropriate formulation for Christensen and Waals [5J. However,
a method will be introduced by which the results of Ref. [5J can be refined to a much higher
degree than was accomplished previously. The key to this new method depends upon the
assumption that the fiber phase is much stiffer than the matrix phase. With this assumption, a
certain small parameter is introduced and an asymptotic expansion is used to obtain the desired
result. Of course the results of this method are more restrictive that those of Ref. [5J, and it must
be proved that the results possess validity for the practical systems of interest; this will be done.

GENERAL FORMULATION

Several results will now be stated which are needed in the further derivation. First, the five
independent effective properties of an aligned fiber system are given by

and finally

VI == V\2 == VI3 == CVj + (1 C)Vm

+ c(1-c)(Vj- Vm)(km :;m/3- 1et:;//3)
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K k +/Lm+ C
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(1)

(2)

(3)

(4)

(5)

where rectangular cartesian coordinates are employed with axis 1being in the fiber direction. The
above results are found from the composite cylinders assemblage of Hashin and Rosen, as
discussed in Ref. [5). Parameter c represents the volume fraction of the fiber phase, with fiber
and matrix properties denoted respectively by subscripts f and m. Actually relation (5) is a lower
bound upon the corresponding property, /L23, and this will be used in the absence of an exact
solution for this particular property.t

In Ref. [5J a method was developed to obtain the isotropic effective properties of a system
having randomly oriented fibers. The method involved a geometric averaging procedure whereby
aligned fiber systems assume all possible orientations. Although this was not explicitly shown in
Ref. [5J, the method developed therein can be used to obtain the following results,

tAn exact solution for this property has been found recently and will be published. It can be demonstrated that for present
purposes, formula (5) gives a sufficiently accurate representation of the exact results.
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(6)

(7)

when 1L3D and k3D are the corresponding effective shear and buik modulii for systems containing a
three dimensionally random fiber orientation. Substitution from relations (1)-(5) into (6) and (7)
permits the determination of the composite properties in terms of the fiber and matrix phase
properties. Unfortunately the final form of relations (6) and (7), after substitution from (1)-(5), is
very complicated, and it does not allow simple, direct interpretation. It is the purpose of this
paper to rationally deduce simplified property forms from relations (6) and (7), under certain
conditions. The primary conditions to be used is that the fiber phase is much stiffer than the
matrix, an entirely realistic condition for all practical systems. First the three dimensional case
will be considered after which the two dimensional, plane stress case will be studied.

THREE DIMENSIONAL RANDOM FIBER ORIENTATION

As mentioned above, it will be assumed that the fibers are very stiff relative to the matrix
properties. In the initial procedure to find simplified modulus expressions, the dilute suspension
case will be invoked. That is, the fiber phase will be taken to be in a sufficiently low volume
concentration such that only terms of order zero and one in c need be retained in the modulii
expressions. Actually this approach will be shown to yield only very limited results, but the
resulting deficiencies are illuminating as regards the search for a more viable approach.

Assume c ~ 1, Et ~ Em and Et ~ km. Under these assumptions it is obvious from (1)-(7) that

(8)

Actually it is not ILm and k3D which are of primary engineering interest, rather it is the elasticity
modulus, Em, which should be obtained. This is of course determined by the usual isotropic
relation

E - 9km IL3D
3D - 3km +ILm . (9)

However, in substituting from relations (8) into (9) three separate cases arise. These are the cases
cEt ~ Em, eEt == Em, and eEt ~ Em. In the second of these cases no simplification is possible after
substituting from (8) into (9). In the first case, eEt ~ Em, (9) can be written in the form of a power
series in (cEtIEm). Retaining up to first order results gives, after algebraic reduction

lcEt~EmE = E + (3 -4vm+8vm
2

) E C ~1
m m 15 C t Et ~ Em

Et ~km.

(10)

Alternatively, in the case, cEt ~ Em, relations (8) and (9) can be combined into the form of a
power series in (EmleEt ). The first two terms of this expansion are given by

(11)
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While relations (10) and (11) are valid under the restrictions used in their derivation, they are
of limited usefulness, because of the restriction to e ~ 1, thus only the slope at the origin of the
E3D vs e curve is obtained. However, one very important observation emerges from the
preceding derivation. Note the necessity to choose between the conditions eEf ~ Em or
eEf p Em. For most practical purposes the latter condition, eEf p Em, is realistic. This
observation suggests that it may be possible to obtain asymptotic results using a power series
expansion in powers of (Em IeEf ) rather than in powers of e as was done in the preceding
derivation. In fact, it will be shown that this is possible, a power series expansion in (Em IeEf ) will
be obtained with no restriction that e itself be small.

Proceeding according to the above lines of reasoning, substitute directly from (6) and (7) into
(9). There results

where

E
3D

= eEf +[2Ell +, (5 +4/11 +8/112)K23
2
+ 6(JL12 + JL23)] +O(1leEf )

6 [1 +2E ll +(7 + 12/11 +8/11 )K23 +2(JL12 +JL23)]
2eEf

Ell + Ell - eEf

(11)

(12)

with eEf p Em and eEf p km. The quotient in (11) can be obtained as a power series in (Em leEf ).

The first two terms of this power series are given by

(13)

Now, under the conditions of eEf p Em and eEf p km, relations (1)-(5) along with (12) can be
reduced to the forms

and

K 23=~+ (1 +3e) JLm
1-e (1-e) 3

(14)

(15)

(16)

(17)

(18)

although it must be noted that these formulii are not valid at e = 1.
The substitution of relations (14)-(18) into (13) completes the derivation. However, the results

are still somewhat complicated unless specific values of Poisson's ratio are assigned. The case of
/If = /1m = ~ has been computed, with the result from (13)-(18) that
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Ell = (1- c)Em

1
JlI=:4

2 (2+ c)
K23 =S (1_c)Em

2(1+c)
1L12=S(1_c)Em

1(2+ c)
1L23 = :5 (1 - c) Em

Substitution of (19) into (13) gives

I
Vt = Jim =4
Et~Em

Et~km

c# 1.

(19)

(20)

The practical usefulness of this formula will be assessed later. First a completely different means
of solving for E3D will be considered.

Under conditions that both phases are incompressible, the second term in (6) can be shown to
vanish leaving

(21)

Substituting for Ell, 1L12 and 1L23 from (1), (4) and (5), with the incompressibility condition, into
(21) gives

With incompressibility, Em = 31L3D and from (22) there results

E I =£E +! [(5+2C +c
2
)Et +(5+C)(1-C)Em]E

3D",-",,-112 5 f 5 (l-c)Et +(1+c)E
m

m·

(22)

(23)

Note that relation (23) is an exact result, obtained from relations (1)-(5) whereas the form (20)
was based upon an asymptotic expansion method. Relations (20) and (23) certainly are
significantly different, and their comparison and usefulness will be determined after first
considering the two dimensional case.

TWO DIMENSIONAL, PLANE STRESS, RANDOM FIBER ORIENTATION

Now consider the case of fibers constrained to be in a plane with otherwise random
orientation. Under plane stress conditions it was shown in Ref. [5] that the two dimensional
modulus is given by

where

with

3
UI =8cEt +".

1 E A

U2 =8 c t + U2

(24)

(25)
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(26)

(27)

and where the properties in (26) and (27) are given by (1)-(5) along with (12).
Substituting (25) into (24), the result can be written as

Em eEt/Em +2(3ul- U2)/Em +O(Em/eEt )
Em == 3+But/eEt

Writing (28) as a power series expansion in (Em/eEt ) gives

Substituting for U, and U2 from (26) and (27) into (29) gives

(28)

(29)

(30)

Substitution from (1)-(5) and (12) into (30) completes the formulation. The resulting form
however is still quite complicated and it will be evaluated here for specific values of Poisson's
ratios. First the case of incompressibility will be considered. for this case

(31)

Ell == (1- e)Em

and it can be shown that

(32)

where 1L12 is given by (4).
Combining (31), (32) and (4) with (30) gives

Now the corresponding result will be found for Vt == Vm == t For these values of Poisson's ratio
the appropriate stiff fiber case forms are given by relations (19). Combining (19) with (30)
provides the final result

EmI ==! eEt+ [272-41e +9Oe
2

] +0 (Em)
Em V/~Vm~1/4 3Em 270(1-e) eEt .

(34)

The difference of the zero order term in (Em/eEt ) in (33) and (34) should be noted. In arriving
at (33) it was not necessary to explicitly write 1L12 and 1L23 in the form appropriate to stiff fibers,
thus both Et and Em appear in the zero order term in (33). However in arriving at (34) the
formulas (19) are those appropriate to stiff fibers, Et ~ Em and Et ~ km , thus Et does not appear in
the zero order term in (34).

Neither formula (33) nor (34) is valid at e == 0 or e == I. At e = 0 the expansion procedure in
powers of (Em/eEt ) is invalidated. The expansion also is invalid at e = 1 since at e = I other
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terms besides Ell contribute a term of the type eEf , the expansion term; consider for example
formula (4) at c = 1. Despite the restrictions c # 0, c # 1, formulas (33) and (34) will be shown to
provide very satisfactory results.

EVALUATION OF RESULTS

First consider the three dimensional random orientation results. Relations (20) and (23) are the
final forms, appropriate to different values of Poisson's ratios. In the case where the matrix phase
vanishes the results from these forms are as follows

(35)

and

(36)

The difference in these relations is reconciled when one recalls the limit processes involved in
reaching the result (36). First there' was the incompressibility process /1m -+! followed by the
vanishing modulus process Em -+ O. An examination of the procedure involved reveals that if the
order of the processes were reversed, then the form (35) results. In light of these remarks the
proper result for the vanishing matrix case is that of relation (35).

Reliable experimental data does not appear to be available in the three dimensional random
case. The utility of the formulas (20) and (23) will be studied through comparison with results
presented in Ref. [5] for a glass-epoxy system. The comparison is shown in Fig. 1. The expansion
formula (20) for /If = Pm =! is indistinguishable from the Ref. [5] result up to a volume fraction of
e =!. At larger values of the volume fraction, formula (20) increasing deviates from the previous
solution. The result (23) for the incompressible case, as applied to the glass-epoxy system, in Fig.
1, exhibits a considerable deviation from the Ref. [5] result which properly incorporates the
proper values of Poisson's ratios for the two phases. This result reveals the sensitivity of the
three dimensionally random system to variations in Poisson's ratio.

In the two dimensional case, there is reliable experimental data for comparison, see Fig. 2.
Relations (33) and (34) are the expansion formulas for the respective cases of Pf = /1m =!,
Pf = /1m =1. Noting the use of the logarithmic scale in Fig. 2, it is seen that the comparison
between the theory and the experimental results are very close, and in fact the results of the two
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Fig. 1. Three-dimensional random orientation case.
Fig. 2. Two-dimensional random orientation case, com

parison with experiment.
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formulas are indistinguishable to within experimental error. As one might expect the
two-dimensional plane stress case is much less sensitive to variations in Poisson's ratio than is
the three dimensional case, as noted in the foregoing discussion.

In view of these results reasonable predictions of the Young's modulus property for stiff,
randomly oriented fibers in a compliant matrix phase are afforded by formulas (20) in the three
dimensional case and formula (33) in the two dimensional case. Rewriting formulas (20) and (33)
here for convenience gives

and

c (l- c) 19 [Et(l +c)+ Em(l- C)]
EZD=3 Et +-3- Em +27 Et(l-c)+Em(l+c) Em (c':O,c#1).

(37)

(38)

The restriction appended to formula (37) follows from the discussion of the results in Fig. 1. The
restriction with formula (38) follows from the nature of the expansion process used to obtain (33).
The truncation of (33) at the level of terms shown in (38) assumes that Em/eEt ~ 1. No matter
how stiff the fibers may be in comparison to the matrix, this inequality would not be satisfied at
c = O. The restriction that e # 1in (38) follows from similar although somewhat more complicated
lines of reasoning, as discussed in the derivation. A modification of the coefficient of 19/27 in (38)
to the value of 18/27 would remove the restriction that e # 0, c -::j. 1. This is not done here since it is
the form (38) which has a rigorous basis of derivation, furthermore such a modification would
change the prediction of formula (38) in its range of derived validity (0 < e < 1).

The formules (37) and (38) provide simple, easy to use predictions of composite properties.
However, for cases outside their range of validity recourse should be made to the exact
predictive method of Ref. [5]. With regard to the geometric averaging method given in Ref. [5], it
represents a method based upon prescribed strains, thus the resulting modulus predictions
represent upper bounds.t Accordingly the present results should be viewed as upper bounds. In
the case of laminated systems of aligned lamina, the prescription of uniform strains among the
lamina corresponds to the requirement of displacement compatibility. Thus the method of Ref.
[5] leads to exact results for the special case of laminated plates, and eqn (38) may be viewed
accordingly. For all other random orientation systems, the present results correspond to the upper
bound results from Ref. [5].
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